K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu hỏi của Tăng Thiện Đạt - Toán lớp 8 - Học toán với OnlineMath

Tham khảo nhé mk làm rồi !

24 tháng 12 2018

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)

\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)

31 tháng 12 2016

Ta có 

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bxz+cxy=0\)

Ta có

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

\(\Rightarrow\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2xy.abc^2+2yz.a^2bc+2xz.ab^2c}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

 Ta có \(cxy+ayz+bxz=0\)

\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow\frac{2abc.0}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

\(\Rightarrow1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=0\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)

30 tháng 12 2016

bài này bạn bình phương vế thứ 2 lên rồi phân k vế 1 là ra đấy

10 tháng 2 2018

khó quá ta

10 tháng 2 2018

Đặt : x/a = m ; y/b = n ; z/c = p

=> m+n+p = 1 ; 1/m+1/n+1/p=0

1/m+1/n+1/p=0

<=> mn+np+pm/mnp=0

<=> mn+np+pm=0

<=> 2mn+2np+2pm=0

Xét : 1 = (m+n+p)^2 = m^2+n^2+p^2+2mn+2np+2pm = m^2+n^2+p^2

=> x^2/a^2+y^2/b^2+z^2/c^2 = 1

=> ĐPCM

Tk mk nha

6 tháng 2 2019

Bạn chỉ cần bình phương PT x/a + y/b + z/c 

và chỉ ra ayz + bxz + cxy = 0 ở PT 2 là xong 

:D 

6 tháng 2 2019

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow(\frac{x}{a}+\frac{y}{b}+\frac{z}{c})^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1-2\frac{ayz+bxz+cxy}{abc}=1-2\cdot0=1(đpcm)\)

2 tháng 12 2015

Ta có:

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)

29 tháng 10 2016
  • 1= (x/a+y/b+z/c)2 = (x/a)+ (y/b)+ (z/c)2 +2(xy/ab+yz/bc+xz/ac) = (x/a)+ (y/b)+ (z/c)+2[(cxy + ayz+bxz)/abc] (1)
  • a/x + b/y + c/z = (ayz+bxz+cxy)/xyz = 0 

           Vì xyz khác 0 nên ayz+bxz+cxy=0 (2) 

  •  Thế (2) vào (1) ta được x2/a+ y2/b2 + z2/c2 + 2(0/abc) = x2/a+ y2/b2 + z2/c2  = 1 ( đpcm ) 
12 tháng 3 2017

1 nha anh !

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Lý giải xíu chỗ $3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)$ cho bạn nào chưa rõ:

Áp dụng BĐT AM-GM:

$(a^2+b^2+c^2)(a+b+c)=(a^3+ac^2)+(b^3+a^2b)+(c^3+b^2c)+(ab^2+bc^2+ca^2)$

$\geq 2a^2c+2ab^2+2bc^2+(ab^2+bc^2+ca^2)=3(ab^2+bc^2+ca^2)$

14 tháng 2 2018

\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\)  C/M thế này cho ít số dễ nhìn 

Quy đồng ta được

\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right)\)

\(a^2yx+a^2y^2+b^2x^2+b^2xy=a^2xy+2abxy+b^2xy\)

rút gọn

\(a^2y^2+b^2x^2=2abxy\)

\(a^2y^2+b^2x^2-2abxy=0\) hằng đẳng thức số 2

\(\left(ay+bx\right)^2=0\) 

\(ay+bx=0\Leftrightarrow ax=-bx\)

vậy \(-bx+bx=0\) đúng 

\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)

14 tháng 2 2018

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)\(\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\)(1)

\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)k}=\frac{a+b+c}{k}\)(2)

Từ (1); (2) => \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)

16 tháng 8 2017

Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))

Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt 

Dùng hằng mở rộng số 4

Ta có :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) (1)

Lại có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng) 

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

Thay 1 vào 

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)

16 tháng 8 2017

mình giải hơi khác 1 chút, nhưng thôi cx đc

15 tháng 3 2018

CM :\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\)  " Cm thế này cho gọn dễ nhìn ok "

\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right).\) " quy đồng khửi mẫu "

\(a^2yx+a^2y^2+b^2x^2+b^2yx=a^2xy+2abxy+b^2xy\) " tính 

\(\left(a^2yx-a^2yx\right)+\left(b^2xy-b^2xy\right)+\left(a^2y^2+2abxy+b^2x^2\right)=0\) " nhóm "

\(\left(a^2y^2+2abxy+b^2x^2\right)=0\) rút gọn

\(\left(ay+bx\right)^2=0\)" hằng đẳng thức "

\(\left(ay+bx\right)^2=0\) " đúng dcpcm "